Civil Engineering Department


To be a global center of excellence in technical and professional education for graduating engineers and serve as a valuable resource to the nation.


  • To bring the graduating engineers and professionals abreast with the cutting-edge technology for profession and research,prepare and develop their full potential with ethics and moral values.
  • To emerge as a leader in technology promotion in identified areas of regional and national importance through enhanced industry-institute interaction.


Civil engineering is a professional engineering discipline that deals with the design, construction and maintenance of the physical and naturally built infrastructure for fulfilment of Basic Needs of human race including Transportation, Communication, Energy production, Religious, Cultural, Sports and Community and Social and Developmental activities like bridges, roads, canals, dams and buildings. This department is the foremost in imparting Civil Engineering education in Pratap University since 2012. Well qualified and experienced faculty is one of the salient features of the department and acute care is taken to ensure that students acquire essential engineering concepts with in-depth understanding. In addition to it, the civil department is well equipped with required departmental laboratories.

The curriculum:

  • Designed to find solutions to the problems of the society in the fast-changing technology.
  • Gives students the theoretical background and professional attitude to serve the public.
  • It typically leads to entry-level positions or to pursue post-graduation in technical specialties like environmental, geotechnical, structural, and traffic & transportation engineering.

Programs Offered:

  • MTech (Civil Engineering) 2 years
  • B.Tech (Civil Engineering) 4 years
  • Diploma (Civil)  3 years


  • Surveying Lab
  • Concrete Technology Lab
  • Transportation Engineering Lab
  • Geo-Technical Engineering Lab
  • Structural Engineering Lab
  • Environmental Engineering Lab
  • Civil Engineering Materials Lab
  • Strength Of Materials Lab
  • Fluid Mechanics Lab


Bharath VB

Kuldeep Singh Solanki

HOD, Civil Department

Welcome to the Department of Civil Engineering at Pratap University. Civil Engineering is one of the most critical disciplines for providing solutions for an ever changing society. It gives me profound pleasure and pride to explore a remarkable education world in the Department of Civil Engineering. It has been our Endeavour, right from the beginning, to make our department a preferred destination for students who want to get to the top of this field. We aspire to mould our students into globally competent and well chiseled Civil Engineers who can meet the challenges of technological advancement. All efforts are also being made to inculcate social values and professional ethics in our students to face the current as well as future global standards. A well-qualified and competent faculty with well equipped labs is committed to provide an excellent teaching methodology for nurturing the students into excellent engineers as well as good human beings. Wishing all our students brilliant and bright future....

Comprehensive Highway Corridor Planning With Sustainability Indicators (Civil Project):

This project develops a Model Of Sustainability and Integrated Corridors (MOSAIC) to select the best program-level plans for corridors within Maryland by estimating the sustainability impact of multimodal highway improvement options early in the transportation planning and environmental screening processes with minimum requirements on staff time and other resources.
Six categories of sustainability indicators (mobility, safety, socio-economic impact, natural resources, energy and emissions, and cost) and more than thirty sustainability performance measures have been defined as evaluation criteria for the selection of highway corridor improvement options.

Comprehensive Highway Corridor Planning With Sustainability Indicators (Civil Project)

Currently, MOSAIC considers the no-build case and two highway improvement options, including adding a general-purpose lane and converting at-grade intersections to grade-separated interchanges.
Mode choice model has also been introduced for future study on multimodal improvement types. MOSAIC has been applied to the US 15 and I 270 corridors, thus demonstrating the feasibility and usefulness of this comprehensive tool for sustainable highway corridor planning.

Quality Timber Strength Grading: A Prediction Of Strength Using Scanned Surface Grain Data And FE-Analyses:

The main purpose of the pursued research presented in this project was to study whether a two-dimensional finite element model of thin timber members containing a single live knot and integrating surface grain data gathered by a laser scanner, could predict the load bearing capacity of such members with a satisfactory accuracy. In the modeling process, it was hypothesized that the scanning data could help obtain some additional information regarding the inner structure of the members in order to improve the predictions.
Furthermore, it was put forward that the predictions could be correctly determined by the use of fracture mechanics theory. An analysis of the data files provided by the scanner demonstrated that the grain data is meaningless over the knots and therefore that no well defined boundary exists in the numerical grain pattern between the knots and the surrounding clear wood.

Quality Timber Strength Grading: A prediction of strength using scanned surface grain data and FE-analyses

Nevertheless, it was noticed that other data could help define the centre of the knots and might correspond, at least coarsely, to the orientation of the fibres in the out-of-plane direction (relating to the surface of the members).
The data was then implemented into the numerical model both for attributing some particular mechanical properties to the knots in comparison to the clear wood and for attributing an out-of-plane angle (or dive angle) to the fibres located in the knots and their vicinity. The model was simulated in bending in order to determine the strains and the stress concentrations of two selected boards. The simulations were carried out with various configurations relating to the mechanical properties of the knots and to the dive angle of the fibres. Meanwhile, the boards were tested to failure in a bending test rig and the system Aramis measured the strains and took photos during loading and up to the instant of failure. Afterwards, the numerical results were compared to the experimental tests to determine how the dive angle and the material properties can make the model tally with reality.
The prediction of the load bearing capacity was achieved thoroughly for one board but resulted, at the best, in a 31.7% underestimation with respect to the actual strength of the board. Several additional predictions were made with modifications of the material properties (because most of the values came from the literature and not from measurements) and emphasized their influence on the variations of the predictions.
Finally, the closest prediction was 14.6% lower than the actual strength. From the analysis of the model configurations and the predictions, it was concluded that the small number of tests does not enable one to distinguish the part of the material properties from the part of the modeling approach and from the part of the accuracy of the measurements in the gap between the predictions of the load bearing capacity and the actual strength of the board. However, some important questions regarding the modeling were raised through the analysis and the conclusions and some prospects were proposed for further research.

Sustainable Building Design With Autodesk Ecotect:

In order to measure and improve the environmental performances of new and existing buildings: the High Environmental Quality Scheme (HQE) has been introduced. Similar to the LEED or BREEAM assessment methods, the HQE Scheme focuses on 14 different environmental themes, such as energy consumption, daylight availability, acoustic comfort, etc. with objectives such as limitation in energy consumption, minimum daylight levels, adequate reverberation time, etc.
Due to the complexity of the many scientific phenomena involved, advanced calculation procedures are required to measure most environmental performances. For instance, the study of heat transfer through building fabric to determine internal temperature variations and heating/cooling loads or the computation of daylight levels in a room when a building is overshadowed by surrounding obstructions is a complicated task that necessitates the use of computer simulation.

Sustainable Building Design with Autodesk Ecotect

However, if various analysis software are today available, they rarely often the possibility to study all these effects at once.. As a consequence, the most time consuming process of drawing the geometry of the building and making the right assignments often needs to be repeated. This not only leads to a waste of time. It also favors local optimization by considering sequentially each environmental quantity in spite of strong interactions between them.
Thus, it was highly desirable to develop a user-friendly and comprehensive software that could optimize a buildings environmental performances at once.


Program Educational Objectives (PEOs)

PEO 1: To prepare the programme as a thorough and step by step preparation of students for higher learning, conducting research and /or ready for employment.
PEO 2: To orient the programme so as to help the students in acquiring professionalism and technical competence.
PEO 3: Widen the horizon of knowledge both in breadth and depth for promoting a scientific approach in solving civil engineering and interdisciplinary problems.
PEO 4: To inculcate human values among the students and encourage them to follow ethical practices.
PEO 5: To encourage students to apply the knowledge for upliftment of society and creation of an environment which will be sustainable and globally compatible.
PEO 6: To develop the department as a leading provider of cutting edge technology in identified areas in the central region.

Program Outcomes(POs)

PO 1: Graduating student will have a good knowledge of basic science , engineering and technology.
PO 2: Graduating student will be able to understand the engineering problems, analyze them and provide solution to theoretical and practical problems either individually or in group.
PO 3: Graduating student will be fully trained in use of conventional and modern equipment’s to deal with the practical and field work.
PO 4: Graduating student will be able to communicate (both oral and written) freely and effectively with better interactive ability with the mass.
PO 5: Graduating student will have the ability to correctly visualize the problems and to come out with most appropriate solution through the development of computer program and/ or making use of the commercially available software packages.
PO 6: Graduating student will demonstrate knowledge of interpersonal skills coupled with correct professional approach and ethical practices..
PO 7: Graduating students will use their technical skills for environmental friendly, sustainable development activities and professional approach to develop the infrastructural and other civil engineering facilities for nation building and also help and guide the weaker section of the society.
PO 8: Graduating student will acquire ability to axel in competitive examination for seeking employment or pursuing higher studies quality research work and will continuously abreast himself with advancement in technology and the new developments.

Faculty Profile